Hólmfríður Sigríðar Hannesdóttir

Valentina Giangreco, August 23, 2019


Math Phys seminar

Speaker: Hólmfríður Sigríðar Hannesdóttir, Harvard University

Title: Infrared Finite S-matrix elements and Cross Section

Room: A-050
Time: Tuesday 27th August, 2:00 pm

Abstract:

Quantum field theory (QFT) works remarkably well for making theoretical predictions in collider scattering experiments. One of the fundamental objects in these calculations, the scattering matrix (S-matrix), is inspired by a well defined operator in non-relativistic quantum mechanics, but is plagued with both ultraviolet (UV) and infrared (IR) divergences in QFT. The UV divergences are now understood through the program of renormalization, but IR divergences remain an active area of research. Three approaches have been explored to define IR finite quantities, which will all be discussed in this talk: i) The cross section method, ii) modification of the S-matrix, and iii) the dressed state formalism. The minimal set of processes required for a finite cross section will be examined, along with the need for forward scattering and disconnected diagrams. We will furthermore explore how the usual assumptions about evolution of the scattering states at asymptotic times are broken in a theory with massless particles, and how the universality of the interactions leading to IR divergences in such theories can be exploited to define finite S-matrix elements.