Posts tagged: probability

Thomas Selig (27/6/18)

Math Colloquium

Speaker: Thomas Selig, University of Strathclyde

Title: EW-tableaux, permutations and recurrent configurations of the sandpile model on Ferrers graphs.

Location: VRII, V-147
Time: Wednesday 27 June at 10:30


The Abelian sandpile model (ASM) is a dynamic process on a graph. More specifically, it is a Markov chain on the set of configurations on that graph. Of particular interest are the recurrent configurations, i.e. those that appear infinitely often in the long-time running of the model. We study the ASM on Ferrers graphs, a class of bipartite graphs in one-to-one correspondence with Ferrers diagrams. We show that minimal recurrent configurations are in one-to-one correspondence with a set of certain 0/1 fillings of the Ferrers diagrams introduced by Ehrenborg and van Willigensburg. We refer to these fillings as EW-tableaux, and establish a bijection between the set of EW-tableaux of a given Ferrers diagram and a set of permutations whose descent bottoms are given by the shape of the Ferrers diagram. This induces a bijection between these permutations and minimal recurrent configurations of the ASM. We enrich this bijection to encode all recurrent configurations, via a decoration of the corresponding permutation. We also show that the set of recurrent configurations over all Ferrers graphs of a given size are in bijection with the set of alternating trees of that size.

Delphin Sénizergues (11/06/18)

Math Colloquium

Speaker:Delphin Sénizergues, Université Paris 13

Title: Random metric spaces constructed using a gluing procedure

Location: VRII – V147
Time: Monday 11 June at 10:50


I will introduce a model of random trees which are constructed by iteratively gluing an infinite number of segments of given length onto each other. This model can be generalized to a gluing of “blocks” that are more complex than segments. We are interested in the metric properties of the limiting metric space, mainly its Hausdorff dimension. We will show that its Hausdorff dimension depends in a non-trivial (and surprising !) manner on the different scaling parameters of the model and the dimension of the blocks.

Adam Timar

Benedikt Magnússon, May 31, 2016

Math Colloquium

Speaker: Adam Timar, Renyi Institute, Budapest
Title: Allocation rules for the Poisson point process

Location: Árnagarður 101.
Time: Friday, June 3, at 13:20-14:20.


Consider the Poisson point process in Euclidean space. We are interested in functions on this random point set whose value in each configuration point is given by some “local” rule (no “central planning”). One example is the so-called allocation problem, where we want to partition R^d to sets of measure 1 and match them with the point process, in a translation equivariant way. We want to make the allocated set optimal in some sense (e.g., the distribution of the diameter shows fast decay). We will present some allocation schemes, among them one with an optimal tail, which is joint work with R. Marko.

Jakob Björnberg (01/04/16)

Sigurður Örn Stefánsson, March 29, 2016

Math Colloquium

Speaker: Jakob Björnberg
Title: Random permutations and quantum Heisenberg models

Location: V-157, VRII.
Time: Friday, April 1 at 13:20.


The interchange process (or random-transposition random walk) is a model for random permutations which is closely related to a model from quantum statistical physics (the ferromagnetic Heisenberg model). In fact, certain ‘cycle-weighted’ interchange processes are equivalent to the latter, and in this talk we present results on such processes. Magnetic ordering in the physical model translates to the occurrence of large cycles in the random permutation.

We focus on the case when the underlying graph is the complete graph (i.e. the ‘mean-field’ case in physical jargon). By a combination of probabilistic techniques and some group character theory we can obtain nice formulas for expectation values in the model, and then use these to identify the critical point.

François David (11/03/16)

Math Colloquium

Speaker: François David
Title: Planar maps, circle patterns and 2D gravity

Location: V-157, VRII.
Time: Friday, March 11 at 13:20.


I present a model of random planar triangulations (planar maps) based on circle patterns and discuss its properties. It exemplifies the relations between discrete random geometries in the plane, conformally invariant point processes and two dimensional quantum gravity (Liouville theory and topological gravity).

Guenter Last (30/10/15)

Sigurður Örn Stefánsson, October 26, 2015

Math Colloquium

Speaker: Guenter Last
Title: Second order properties of the Boolean model and the Gilbert graph

Location: V-157, VRII.
Time: Friday, October 30, at 15:00-16:00.


The Boolean model is a fundamental model of stochastic geometry and continuum percolation. It is a random subset of Euclidean space that arises as the union of random convex grains, independently centered around the points of a stationary Poisson process. The restriction of the Boolean model to a convex and compact observation is a finite union of convex sets. Therefore it makes sense to talk about its intrinsic volumes as volume, surface content, and Euler characteristic.

In this lecture we shall first discuss classical formulae for the densities (normalized expectations) of these intrinsic volumes. Then we proceed with studying asymptotic covariances for growing observation window. These covariances can be expressed in terms of curvature measures associated with a typical grain. In the two-dimensional isotropic case the formulae become surprisingly explicit. We also present a multivariate central limit theorem including Berry-Esseen bounds, derived with the so-called Stein-Malliavin method. If time permits we will also discuss some cluster properties of the Gilbert graph which is a close relative of the Boolean model.

Large parts of the talk are based on joint work with Daniel Hug and
Matthias Schulte.

Páll Melsted (23/10/15)

Sigurður Örn Stefánsson, October 12, 2015

Math Colloquium

Speaker: Páll Melsted
Title: Space Utilization of Cuckoo Hashtables

Location: V-157, VRII.
Time: Friday, October 23, at 15:00-16:00.


We study the space requirements for Cuckoo Hashing. This can be reduced to
the following question in Random Graphs.

We are given two disjoint sets L,R with |L|=n=alpha*m and |R|=m. We construct a random graph G by allowing each x in L to choose d random neighbours in R. The problem is to find m(G), the size of the largest matching in G.

From the point of view of Cuckoo Hashing, a key question is to locate the threshold for when m(G)=n with high probability, since if m(G) < n it is impossible to store all items. We answer this question exactly for all values of d.

Hermann Thorisson (28/05/15)

Benedikt Magnússon, May 26, 2015

Math Colloquium

Speaker: Hermann Thorisson, University of Iceland
Title: Mass-Stationarity, Shift-Coupling, and Brownian Motion

Location: Naustið, Endurmenntun (here)
Time: Thursday, May 28, at 15:00-16:00.


After considering mass-stationarity and shift-coupling briefly in an abstract setting, we focus on the special case of stochastic processes on the line associated with diffuse random measures. The main examples are Brownian motion and the Brownian bridge.

Jakob Björnberg (17/11/14)

Benedikt Magnússon, November 13, 2014

Math Colloquium

Speaker: Jakob Björnberg, Chalmers Tekniska Högskola, Göteborg
Title: Percolation in random quadrangulations of the half-plane

Location: V-157, VRII
Time: Monday, November 17 at 15:00-16:00.


The topic of random planar quadrangulations (and, more generally, random planar maps) is of interest to probabilists, combinatorialists and physicists alike. Recent years have seen considerable progress on understanding large random planar maps themselves, and the next big challenge is to understand maps “with matter”; that is, to study models from statistical physics on large random planar maps. In this talk we consider such a model, specifically site percolation on uniform quadrangulations of the half-plane. The talk is based on ongoing work together with Sigurdur Stefansson (Reykjavik) where we use a “spatial Markovian property” of the quadrangulations (first described by O. Angel) to study the percolation phase transition. We will describe this Markovian property, see how Angel (et al) used it in the case of triangulations, and discuss results and challenges for the case of quadrangulations.

Sigurður Örn Stefánsson (27/10/14)

Benedikt Magnússon, October 23, 2014

Math Colloquium

Speaker: Sigurður Örn Stefánsson, University of Iceland
Title: Convergence of random planar maps to the Brownian tree

Location: V-157, VRII
Time: Monday, October 27 at 15:15-16:15.


Random planar maps are defined by assigning non-negative weights to each face of a planar map and the weight of a face depends only on its degree. I will explain the Bouttier-Di Francesco-Guitter bijection between the planar maps and a class of labelled trees called mobiles. By throwing away labels one can, via another bijection, relate the mobiles to the model of so-called simply generated trees which are understood in detail. For certain choices of weights a unique large face, having degree proportional to the total number of edges in the maps, appears with high probability when the maps are large. This corresponds to a recently studied phenomenon of condensation in simply generated trees where a vertex having degree proportional to the size of the trees appears. In this case the planar maps, with a properly rescaled graph metric, are shown to converge in distribution towards Aldous’ Brownian tree in the Gromov-Hausdorff topology.