Málstofa í stærðfræði Fyrirlesari: Oleg Evnin Titill: Non-linear perturbations of AdS space-time Staðsetning: VR-II, 147. Tímasetning: Þriðjudaginn 30. júní, klukkan 15:00-16:00. Ágrip: Recent, mostly numerical investigations have revealed a complex interplay of stability and instability in the dynamics of classical AdS perturbations. I’ll review some attempts to develop an analytic understanding of these fascinating phenomena, […]
Málstofa í stærðfræði
Málstofa í stærðfræði Fyrirlesari: Evgeny Poletsky, Syracuse University Titill: Hardy spaces on hyperconvex domains: recent advances Staðsetning: Naustið, Endurmenntun (hér) Tími: Fimmtudagur 11. júní, klukkan 15:00-16:00. Ágrip: In 2008 M. Stessin and the speaker introduced on a general hyperconvex domain the spaces of holomorphic functions as analogs of the classical Hardy spaces on the unit
Málstofa í stærðfræði Fyrirlesarar: Bjarni Jens Kristinsson, Háskóla Íslands, og Henning Úlfarsson, Háskólanum í Reykjavík Titill: Occurrence graphs of patterns in permutations Staðsetning: Naustið, Endurmenntun (hér) Tími: Fimmtudagur 4. júní, klukkan 15:00-16:00. Ágrip: This paper is based on a generalisation of the idea behind the proof of the Simultaneous Shading Lemma by Claesson et al.
Hermann Þórisson (28/05/15)
Málstofa í stærðfræði Speaker: Hermann Thorisson, University of Iceland Title: Mass-Stationarity, Shift-Coupling, and Brownian Motion Staðsetning: Naustið, Endurmenntun (hér) Tími: Fimmtudagur 28. maí, klukkan 15:00-16:00. Ágrip: After considering mass-stationarity and shift-coupling briefly in an abstract setting, we focus on the special case of stochastic processes on the line associated with diffuse random measures. The main
Hermann Þórisson (28/05/15) Read More »
Málstofa í stærðfræði Speaker: Christer O. Kiselman, Uppsala University Title: Discrete convolution operators, the Fourier transformation, and its tropical counterpart: the Fenchel transformation Staðsetning: Naustið, Endurmenntun (hér) Tími: Þriðjudagur 26. maí, klukkan 15:00-16:00. Ágrip: We study solvability of convolution equations for functions with discrete support in , a special case being functions with support in
Málstofa í stærðfræði Speaker: Rögnvaldur Möller Title: Infinite cubic vertex-transitive graphs Staðsetning: Naustið, Endurmenntun (hér) Tími: Fimmtudagur 21. maí, klukkan 15:00-16:00. Ágrip: Tutte’s two papers from 1947 and 1959 on cubic graphs were the starting point of the in-depth study of the interplay between the structure of a group and the structure of a graph
Málstofa í stærðfræði Speaker: Ville Keränen, University of Oxford Title: Thermalization in the AdS/CFT duality Staðsetning: V-155, VR-II Tími: Mánudaginn 18. maí, klukkan 15:00-16:00. Ágrip: The AdS/CFT duality relates the dynamics of certain strongly interacting quantum field theories to the dynamics of certain gravitational theories in spacetimes with one higher dimension. Thus, it provides an
Málstofa í stærðfræði Speaker: Thomas Vallier, University of Iceland Title: Majority bootstrap percolation on . “ Staðsetning: Naustið, Endurmenntun (hér) Tími: Fimmtudagur 7. maí, klukkan 15:00-16:00. Ágrip: Majority bootstrap percolation is a process of spread of „activation“ on a given graph with a given number of initially active nodes chosen uniformly at random. At each
Málstofa í stærðfræði Speaker: Emmanuel Mazzilli, Université de Lille 1 Title: J-holomorphic curves in real analytic hypersurface. Staðsetning: Naustið, Endurmenntun VR-II, 158 Tímasetning: Fimmtudaginn 23. apríl, klukkan 15:00-16:00. Ágrip: In my talk, I will speak about the existence of J-holomorphic curves in real analytic hypersurface for J an real analytic almost complex structure. In particular,
Málstofa í stærðfræði Speaker: Miroslav Englis, Mathematics Institute, Prague & Opava, Czech Republic Title: High-power asymptotics of weighted harmonic Bergman kernels Staðsetning: Naustið, Endurmenntun, VR-II, 158. Tímasetning: Fimmtudaginn 23. apríl, klukkan 11:00-12:00. Ágrip: The asymptotics of the weighted Bergman kernels with respect to the weight , where is a defining function for a smoothly bounded